We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Extending Spark Machine Learning Pipelines

Formale Metadaten

Titel
Extending Spark Machine Learning Pipelines
Untertitel
Going beyond wordcount with Spark ML
Serientitel
Anzahl der Teile
611
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2017

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Apache Spark is one of the most popular new "big data" technologies, and nowhas a sci-kit-learn inspired pipeline API. This talk looks at how the pipelineAPI works as well as how to add your own custom algorithms to Apache Spark. Apache Spark is one of the most popular new "big data" technologies, and nowhas a sci-kit-learn inspired pipeline API. This talk looks at how the pipelineAPI works as well as how to add your own custom algorithms to Apache Spark.The talk will be focused in Scala, but the same techniques can be used in Javaor with other JVM languages. Sadly extending the pipeline API can notcurrently be done in non-JVM languages, but the information on how to use thepipeline API will be useful to Python and R users as well.