We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Creating georeferenced digital elevation models from unmanned aerial vehicle images

Formale Metadaten

Titel
Creating georeferenced digital elevation models from unmanned aerial vehicle images
Serientitel
Anzahl der Teile
611
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2017

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
With the proliferation of unmanned aerial vehicles (UAV) on the one hand, andthe availability of Structure from Motion (SfM) algorithm [1] in theopensource Micmac [2, 3, 4] software suite (French National GeographicInstitute, IGN) for generating Digital Elevation Models (DEM) and orthophotoson the other hand, we describe the processing chain to acquire andgeoereference DEMs in QGIS. The fast acquisition and very high (sub-meter)resolution are well suited for repeated measurements and assess terrainmorphological changes. The processing sequence is 1. fly and acquire georeferenced images. If only a GPS receiver and camera are aboard the UAV, matching time tag with GPS date and time will allow for georeferencing the pictures (exiftool) 2. identify matching points between adjacent images: the GPS position is used to reduce the number of comparisons and limit the lengthy analysis to nearest neighbors 3. identify lens properties, bringing the largest cause of uncertainty in the model generation, from various pictures of the same ground feature exhibiting as much height variation as possible, 4. generate coarse point cloud to assess camera position and matching algorithm consistency 5. generate dense point cloud, orthophoto and DEM 6. include the resulting georeferenced pointcloud in QGis, converting the (arbitrary TIF) pixel value to quantitative height (meters). We demonstrate sub-meter resolution DEM generation in vegetation-lessenvironments (urban, glacier moraine) while coarse-acquisition (C/A) single-frequency GPS only allows for 5-m accuracy, hence requiring an additionalground control point matching step for repeated DEM comparison. This presentation is a shortened sequel to the [FOSS4G presentation given in2016] (in French at the moment) focusingon UAV azimutal images. [1] Nolan, M., Larsen, C. F., and Sturm, M.: Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry, The Cryosphere Discuss., 9, 333-381, doi: 10.5194/tcd-9-333-2015, 2015 [2] J. Lisein, M. Pierrot-Deseilligny, S. Bonnet, P. Lejeune. APhotogrammetricWorkflow for the Creation of a Forest Canopy Height Model fromSmall Unmanned Aerial System Imagery. Forests, Volume 4, Issue 4, pp.922-944, doi: 10.3390/f4040922, December 2013 [3] Daakir M., Pierrot Deseilligny M., Pichard F., Bosser P (2015). & ThomC., UAV photogrammetry and GPS positioning onboard for earthworks, [ISPRSJournal of Photogrammetry and Remote Sensing]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France, doi:10.5194/isprsarchives-XL-3-W3-293-2015 [4] [Github archive] micmacIGN and its [excellentdocumentation] micmacIGN/Documentation