We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

BigPetStore on Spark and Flink

Formale Metadaten

Titel
BigPetStore on Spark and Flink
Untertitel
Implementing use cases on unified data engines
Serientitel
Anzahl der Teile
611
Autor
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2017

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
by Marton Balassi At: FOSDEM 2017 Implementing use cases on unified data platforms. Having a unified dataprocessing engine empowers Big Data application developers as it makesconnections between seemingly unrelated use cases natural. This talk discussesthe implementation of the so-called BigPetStore project (which is a part ofApache Bigtop) in Apache Spark and Apache Flink. The aim BigPetStore is toprovide a common suite to test and benchmark Big Data installations. The talkfeatures best practices and implementation with the batch, streaming, SQL,DataFrames and machine learning APIs of Apache Spark and Apache Flink side byside. A range of use cases are outlined in both systems from data generation,through ETL, recommender systems to online prediction. Session type Lecture Session length 30 min + 5 min discussion Expected prior knowledge / intended audience Basic exposure to Big DataSystems Speaker bio Márton Balassi is a Solution Architect at Cloudera and a PMCmember at Apache Flink. He focuses on Big Data application development,especially in the streaming space. Marton is a regular contributor to opensource and has been a speaker of a number of open source Big Data relatedconferences including Hadoop Summit and Apache Big Data and meetups recently. Room: H.2213 Scheduled start: 2017-02-04 15:30:00