We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Computational models of stem cell decisions

Formale Metadaten

Titel
Computational models of stem cell decisions
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Molecular regulation of cell fate decisions underlies health and disease. In my talk, I will present mathematical and statistical models that describe molecular interactions, differentiation decisions, and single cell gene expression. We use these models to infer molecular and cellular properties from biological and biomedical data. For example, in lineage trees of differentiating blood stem cells, we often observe correlated state changes between related cells. Using these correlations and a stochastic model of the differentiation process, we find differentiation events to happen much earlier than previously anticipated. To predict differentiation prospectively, we use a deep neural network trained on image patches from brightfield microscopy and cellular movement. Surprisingly, we can detect lineage choice in blood stem cells up to three generations before conventional molecular lineage markers are observable. Finally, I will present a method for fitting stochastic models to lineage trees. Using a Bayesian inference method, we compare possible models of autoregulation, an important gene regulatory motif in stem cells.>