We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - Weapons for Dog Fight:Adapting Malware to Anti-Detection based on GAN

Formale Metadaten

Titel
CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - Weapons for Dog Fight:Adapting Malware to Anti-Detection based on GAN
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Zhuang Zhang, Bo Shi, Hangfeng Dong, from Tencent Yunding Lab(Tweet@YDLab9) Since the malware come out, there is a fight between malware and AV. So more and more methods based on machine learning apply to detect malware. We will share how to detect polymorphic malware based on CNN,then we will introduce a method use generative adversarial network to generate adversarial malware examples to bypass machine learning based detection models. Zhuang Zhang is the senior researcher at Tencent Yunding Laboratory. Bo Shi is the Ecosystem Director of Tencent Yunding Laboratory. Hangfeng Dong is the researcher of Tencent Yunding Laboratory.