We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - Transferable Adversarial Perturbations

Formale Metadaten

Titel
CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - Transferable Adversarial Perturbations
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
State-of-the-art deep neural network classifiers are highly vulnerable to adversarial examples which are designed to mislead classifiers with a very small perturbation. However, the performance of black-box attacks (without knowledge of the model parameters) against deployed models always degrades significantly. In this paper, We propose a novel way of perturbations for adversarial examples to enable black-box transfer. We first show that maximizing distance between natural images and their adversarial examples in the intermediate feature maps can improve both white-box attacks (with knowledge of the model parameters) and black-box attacks. We also show that smooth regularization on adversarial perturbations enables transferring across models. Extensive experimental results show that our approach outperforms state-of-the-art methods both in white-box and black-box attacks. Bruce Hou, senior security researcher with more than four years of experience in Tencent Security Platform Department, mainly focuses on the classification of images and videos, human-machine confrontation and the attacks and defenses of cyber security. Wen Zhou, senior security researcher with multiple years of experience in Tencent Security Platform Department, mainly focuses on the research of computer vision, adversarial-examples and so on. Tencent Blade Team was founded by Tencent Security Platform Department, focusing in security researches of AI, mobile Internet, IoT, wireless devices and other cutting-edge technologies. So far, Tencent Blade Team has reported many security vulnerabilities to a large number of international manufacturers, including Google and Apple. In the future, Tencent Blade Team will continue to make the Internet a safer place for everyone.