We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AI VILLAGE - Hunting the Ethereum Smart Contract: Color Inspired Inspection of Potential Attacks

Formale Metadaten

Titel
AI VILLAGE - Hunting the Ethereum Smart Contract: Color Inspired Inspection of Potential Attacks
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Blockchain and Cryptocurrencies are gaining unprecedented popularity and understanding. Meanwhile, Ethereum is gaining a significant popularity in the blockchain community, mainly due to the fact that it is designed in a way that enables developers to write decentralized applications (Dapps) and smart contract. This new paradigm of applications opens the door to many possibilities and opportunities. However, the security of Ethereum smart contracts has not received much attention; several Ethereum smart contracts malfunctioning have recently been reported. Unlike many previous works that have applied static and dynamic analyses to find bugs in smart contracts, we do not attempt to define and extract any features; instead we focus on reducing the expert’s labor costs. We first present a new in-depth analysis of potential attacks methodology and then translate the bytecode of solidity into RGB color code. After that, we transform them to a fixed-sized encoded imag​​e. Finally, the encoded image is fed to convolutional neural network (CNN) for automatic feature extraction and learning, detecting security flaw of Ethereum smart contract.