We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AI VILLAGE - Adversarial Stickers

Formale Metadaten

Titel
AI VILLAGE - Adversarial Stickers
Alternativer Titel
Adversarial Patches
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Adversarial examples fooling machine learning field are a burgeoning field. We propose applications to fool self driving cars or facial recognition systems but most of the techniques are purely academic. They require minute manipulations to the bit values of the pixels entering a system. Adversarial patches are an attack that could actually work. This talk will cover how to make them and further applications I got my Ph.D. in algebraic topology in 2016 and immediately moved into machine learning to work on something useful to people. I then completed a post-doc in mathematical machine learning where I worked on medical data. I now work at endgame.