We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AI VILLAGE - DeepPhish: Simulating the Malicious Use of AI

Formale Metadaten

Titel
AI VILLAGE - DeepPhish: Simulating the Malicious Use of AI
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Machine Learning and Artificial Intelligence have become essential to any effective cyber security and defense strategy against unknown attacks. In the battle against cybercriminals, AI-enhanced detection systems are markedly more accurate than traditional manual classification. Through intelligent algorithms, detection systems have been able to identify patterns and detect phishing URLs with 98.7% accuracy, giving the advantage to defensive teams. However, if AI is being used to prevent attacks, what is stopping cyber criminals from using the same technology to defeat both traditional and AI-based cyber-defense systems? This hypothesis is of urgent importance - there is a startling lack of research on the potential consequences of the weaponization of Machine Learning as a threat actor tool. In this talk, we are going to review how threat actors could exponentially improve their phishing attacks using AI to bypass machine-learning-based phishing detection systems. To test this hypothesis, we designed an experiment in which, by identifying how threat actors deploy their attacks, we took on the role of an attacker in order to test how they may use AI in their own way. In the end, we developed an AI algorithm, called DeepPhish, that learns effective patterns used by threat actors and uses them to generate new, unseen, and effective attacks based on attacker data. Our results show that, by using DeepPhish, two uncovered attackers were able to increase their phishing attacks effectiveness from 0.69% to 20.9%, and 4.91% to 36.28%, respectively.