We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Climate extremes and grassland potential productivity

Formale Metadaten

Titel
Climate extremes and grassland potential productivity
Serientitel
Anzahl der Teile
13
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The considerable interannual variability (IAV) (~5 PgC yr−1) observed in atmospheric CO2 is dominated by variability in terrestrial productivity. Among terrestrial ecosystems, grassland productivity IAV is greatest. Relationships between grassland productivity IAV and climate drivers are poorly explained by traditional multiple-regression approaches. We propose a novel method, the perfect-deficit approach, to identify climate drivers of grassland IAV from observational data. The maximum daily value of each ecological or meteorological variable for each day of the year, over the period of record, defines the 'perfect' annual curve. Deficits of these variables can be identified by comparing daily observational data for a given year against the perfect curve. Links between large deficits of ecosystem activity and extreme climate events are readily identified. We applied this approach to five grassland sites with 26 site-years of observational data. Large deficits of canopy photosynthetic capacity and evapotranspiration derived from eddy-covariance measurements, and leaf area index derived from satellite data occur together and are driven by a local-dryness index during the growing season. This new method shows great promise in using observational evidence to demonstrate how extreme climate events alter yearly dynamics of ecosystem potential productivity and exchanges with atmosphere, and shine a new light on climate–carbon feedback mechanisms.