We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska

Formale Metadaten

Titel
Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska
Serientitel
Anzahl der Teile
20
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Climate has warmed substantially in interior Alaska and several remote sensing studies have documented a decadal-scale decline in the normalized difference vegetation index (NDVI) termed a 'browning trend'. Reduced summer soil moisture due to changing climatic factors such as earlier springs, less snowpack, and summer drought may reduce boreal productivity and NDVI. However, the relative importance of these climatic factors is poorly understood in boreal interior Alaska. In this study, I used the remotely sensed peak summer NDVI as an index of boreal productivity at 250 m pixel size from 2000 to 2014. Maximum summer NDVI was related to last day of spring snow, early spring snow water equivalent (SWE), and a summer moisture index. There was no significant correlation between early spring SWE and peak summer NDVI. There was a significant correlation between the last day of spring snow and peak summer NDVI, but only for a few higher elevation stations. This was likely due to snowmelt occurring later at higher elevations, thus having a greater effect on summer soil moisture relative to lower elevation sites. For most of boreal interior Alaska, summer drought was likely the dominant control on peak summer NDVI and this effect may persist for several years. Peak summer NDVI declined at all 26 stations after the 2004 drought, and the decline persisted for 2 years at all stations. Due to the shallow rooting zone of most boreal plants, even cool and moist sites at lower elevations are likely vulnerable to drought. For example the peak summer NDVI response following the 2004 drought was similar for adjacent cold and warm watershed basins. Thus, if frequent and severe summer droughts continue, moisture stress effects are likely to be widespread and prolonged throughout most of interior boreal Alaska, including relatively cool, moist sites regardless of spring snowpack conditions or spring phenology.