We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The defect effects on the signal transport of an excitable soft cable

Formale Metadaten

Titel
The defect effects on the signal transport of an excitable soft cable
Serientitel
Anzahl der Teile
63
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
How a local perturbation affects a propagating wave traveling in a homogeneous medium is a general physics question widely investigated in condensed materials. Intuitively, one might expect that a perturbation would suppress the transport ability of the medium if it is quasi one dimensional. This is generically true as defects and impurities influence numerous non-excitable systems such as carbon nanotubes, nanowires and DNA double helixes. However, if the system is excitable, such as a neuron, a defect may generate a highly non-trivial dynamical behavior. In this paper, using the Hodgkin–Huxley model, we explored this diversity generated by locally non-uniform ion channel densities caused by toxins, diseases, environmental disorders or artificial manipulations. These channel density defects could induce several exotic behaviors, in contrast with the normal destructive role of defects in solid-state physics. They may behave as an electric signal generator exhibiting spontaneous or stimulated emissions, as well as trap, reflect, rectify, delay or extinguish propagating signals or be switched to different functions by a signal. Nonlinear analysis and phase diagrams were used to quantify this dynamical complexity. The results may contribute to research on signal manipulation in biotechnology, neuronal diseases and damages, channel distribution-related cell functions and defect dynamics in general excitable mathematical models.