We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Relaxation of a spring with an attached granular damper

00:00

Formale Metadaten

Titel
Relaxation of a spring with an attached granular damper
Serientitel
Anzahl der Teile
63
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The oscillation of a spring may be attenuated by means of a granular damper. In difference to viscous dampers, the amplitude decays nearly linearly in time up to a finite value, from there on it decays much slower. We quantitatively explain the linear decay, which was a long-standing question.
NiederspannungsnetzRelaxationszeitSchwingungsdämpferFrühjahrGleitlagerElementarteilchenphysikVideotechnikComputeranimation
FrühjahrRelaxationszeitSchwingungsdämpferSchwingungstilgerOptischer ResonatorSicherheitsbehälterSchwingungsdämpferImpulsübertragungSchwingungstilgerTeilchenIsostatisches Heißpressen
Masse <Physik>SchwingungstilgerAmplitudeSchwingungsdämpferFrühjahrComputeranimation
MikrogravitationAmplitudeBlatt <Papier>SchwingungsdämpferTeilchenTechnische ZeichnungDiagramm
MikrogravitationNegativer WiderstandRelaxationszeitUmlaufzeitProzessleittechnikSchwingungsdämpferTeilchenSicherheitsbehälterSchwellenspannungAmplitudeGasMaschineSatzspiegelComputeranimation
TheodolitAmplitudeSchwellenspannungProzessleittechnikGasComputeranimationDiagramm
SicherheitsbehälterAmplitudePatrone <Munition>Diagramm
GammaquantSchwingungstilgerSicherheitsbehälterAmplitude
Transkript: Englisch(automatisch erzeugt)
A granular damper is a container or cavity filled by microscopic particles. When agitated, granular dampers dissipate energy due to inelastic collisions. Therefore, the amplitude of a harmonic spring with an attached granular damper decays in time.
When the influence of gravity is eliminated, one observes a surprising characteristic behavior. Unlike a viscous damper, a granular damper does not lead to an exponential decay in amplitude as a function of time. Instead, it decays almost linearly.
This is true up to a certain residual amplitude. After this point, the decay of the amplitude proceeds much slower. These characteristic features have been reported in a number of publications but remain unexplained. The present paper aims to explain this behavior.
For large amplitudes, we observe a collective motion of the particles, synchronous to the motion of the box. For small amplitudes, a disordered gas-like motion is observed. We find the same dynamical behavior in a steadily driven granular damper. For small amplitudes, we see the gas-like behavior.
For large amplitudes, all particles collapse inelastically onto the wall, twice per period, and get released once the box starts to decelerate. These two regimes are separated by a threshold amplitude, determined by the filling ratio of the container. This similarity suggests to consider the relaxation process as a sequence of steady states,
which is justified as long as the relaxation time is much larger than the period of the oscillation. With this, we can use the previously derived expressions for the energy dissipation in the steady driven system to describe the relaxation. The result is a differential equation describing the decay in amplitude.
This prediction agrees very well with the experimental data. The collect-and-collide damping process continues until the amplitude crosses the threshold where a transition to the gas-like regime occurs and the damping is much weaker. The initial slope of the amplitude and the residual amplitude where the rapid linear decay ceases
are both increasing functions of the filling ratio of the container. Therefore, when applying granular dampers, one has to compromise between efficient damping and final amplitude.