We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mapping gigahertz vibrations in a plasmonic–phononic crystal

00:00

Formale Metadaten

Titel
Mapping gigahertz vibrations in a plasmonic–phononic crystal
Serientitel
Anzahl der Teile
63
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We image the gigahertz vibrational modes of a plasmonic–phononic crystal at sub-micron resolution by means of an ultrafast optical technique, using a triangular array of spherical gold nanovoids as a sample. Light is strongly coupled to the plasmonic modes, which interact with the gigahertz phonons by a process akin to surface-enhanced stimulated Brillouin scattering. A marked enhancement in the observed optical reflectivity change at the centre of a void on phononic resonance is likely to be caused by this mechanism. By comparison with numerical simulations of the vibrational field, we identify resonant breathing deformations of the voids and elucidate the corresponding mode shapes. We thus establish scanned optomechanical probing of periodic plasmonic–phononic structures as a new means of investigating their coupled excitations on the nanoscale.
NiederspannungsnetzElementarteilchenphysikGleitlagerVideotechnikKristallwachstumAchtzig-Zentimeter-KanoneÖffentliches VerkehrsmittelLichtPlasmonPatrone <Munition>KristallstrukturMie, GustavAtmosphärische StörungHaspel <Textiltechnik>DrehmasseFACTS-AnlageKontraktionBuntheitModellbauerTeilchenrapiditätElektronische MedienGleitlagerComputeranimationBesprechung/Interview
FACTS-AnlageKristallwachstumArrayRucksackPfadfinder <Flugzeug>KristallstrukturBesprechung/Interview
ElektronenmikroskopPfadfinder <Flugzeug>KristallstrukturSpeckle-Interferometrie
IntensitätsverteilungFlugsimulatorÖffentliches VerkehrsmittelLichtBesprechung/Interview
KristallwachstumBesprechung/Interview
PlasmonHammerKristallwachstumPhysikalisches ExperimentBesprechung/Interview
SensorLaserFamilie <Elementarteilchenphysik>Gauß-BündelMikroskopobjektivPhotographische PlatteIntensitätsverteilungInfrarotlaserLichtLaserComputeranimation
ResonanzenergieQuantenfluktuationKristallstrukturIntensitätsverteilungMonatComputeranimation
Angeregter ZustandNiederfrequenzMassenresonanzHammerStörstelleComputeranimation
ErdefunkstelleÖffentliches VerkehrsmittelKalenderjahrComputeranimation
StörstelleElektrisches SignalResonanzenergieKalenderjahrComputeranimation
KristallwachstumAkustooptischer ModulatorMessungMotorSchiffsklassifikationNiederfrequenzTelefonVorlesung/KonferenzBesprechung/Interview
SchmalfilmBesprechung/Interview
Transkript: Englisch(automatisch erzeugt)
Mental structures like this golden crown or goblet here can trap light. Since the goblet is very smooth, it's not hard to imagine the light going round and round inside forming electromagnetic modes. The objective of our research is to modulate light in vibrating goblets.
If the goblet is very small with sub-micron radius then we call the electromagnetic modes plasmons or more specifically Mie-like plasmons after the German scientist Gustav Mie. Violet? More goblets!
Let's arrange them like this. Our sample is in fact a close packed array of golden goblets forming a plasmonic crystal.
A section of the sample is shown here together with an electron microscope image. The truncated nanovoids intersect a bit giving an interconnected structure marked by triangular pillars. Electromagnetic simulations like this one for blue light confirm that the light in Mie modes is concentrated inside the nanovoids.
To produce vibrations what we effectively do is take a hammer and strike the plasmonic crystal. These vibrations show that it's not just a plasmonic crystal, it's also a phononic crystal. Actually instead of a hammer we use ultra-short light pulses.
In the experiment red laser light pulses create tiny vibrations by heating a small sub-micron spot. Blue light pulses detect the vibrations through intensity changes at the same point.
These are very high-pitched vibrations around 1 GHz. We scan the sample position and change the timing of the laser pulses to make movies. Here is an example for a 6 micron square area. It is slowed down a thousand million times. The intensity fluctuations are caused by the structure flexing.
We process the data to extract the vibrational frequencies one by one like this example at around 0.7 GHz where we see a strong mechanical resonance. The hexagon encloses a region with seven nanovoids.
By averaging the data we can form a good picture of where the vibrations are most efficiently generated and detected. Here you can see them very strongly at the centre of the nanovoids at three different vibrational resonance frequencies. We can also watch the variation in time at these frequencies as movies. To understand these data, let's look at a numerical simulation
corresponding to a hammer blow to the centre of a nanovoid. This produces acoustic modes, analogous to the electromagnetic modes I've already mentioned. This is a side view of the sample motion at around 1 GHz. You can see the central nanovoid periodically opening and closing.
It's just like a golden goblet opening and closing. This breathing motion changes the nanovoid plasmonic resonances. We believe that the plasmonic response is enhancing the observed signals we detect from the void centre.
So we can map vibrations in a plasmonic phononic crystal. If you think that's a mouthful, you can say plasphonic crystal. Engineering both the plasmonic and phononic properties of our plasmonic crystal to enhance the optomechanical interactions could open up the possibility for novel devices
such as high-frequency acousto-optic modulators. I shall conclude by drinking your health in a plasmonic void. Mead wallet! A measure of mead! Yes!