Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 62 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38802 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
26
00:00
Kette <Zugmittel>NiederspannungsnetzSchmelzsicherungGleitlagerElementarteilchenphysikVideotechnikComputeranimation
00:03
BrechzahlKette <Zugmittel>TrenntechnikModellbauerNetzwerkanalyseTagesschachtUhrwerkKosmischer StaubBestrahlungsstärkeChirpBesprechung/Interview
00:43
Kette <Zugmittel>StadtklimaDiagramm
00:55
Kette <Zugmittel>Besprechung/Interview
01:10
Schwache LokalisationWarmumformenBrechzahlKette <Zugmittel>RundstahlketteModellbauerRelative DatierungBesprechung/Interview
01:57
KalenderjahrBesprechung/Interview
02:12
Schwache LokalisationErsatzteilBesprechung/Interview
02:17
KalenderjahrEnergieniveauDrehenGasBesprechung/Interview
Transkript: Englisch(automatisch erzeugt)
00:03
Ciao! I'm Carlo Vittorio Canestracci and I will speak about models of link prediction in complex networks. One of the most famous strategies to predict the likelihood that two individuals interact in a social network is to count the number of common neighbors, common friends, they share.
00:23
The more common neighbors they have, the higher is the likelihood that they will interact. This method is called the Common Neighbors Index. It works in general for many complex networks and there exist several variants with indices based on it. In 2012 I proposed a new idea.
00:42
I had the intuition that not only the number of common neighbors, but also the number of interactions between them can be fundamental for predicting the likelihood that two individuals interact. The idea is that the more interactions occur between the common neighbors, the higher is the likelihood that they form a local community.
01:04
And thus the higher is the likelihood that two individuals will meet each other creating a new link. I automatically modified many indices based on common neighbors strategy introducing the idea of local community and in general I could boost the performance in link prediction.
01:21
Finally, I understood that this was possible only because many real networks are organized according to the following general principle. The more common neighbors has an existing link in the network, more local community links will be present in the local community.
01:41
This is a theory that I called the local community paradigm. His work was published in 2013 and I have to thank two great colleagues and scientists Gregorian Islobato and Timo D'Iravazzi for their help and contribution to create the article. Around one year ago I moved to Dresden and there I met Simone D'Amelie,
02:03
a brilliant scientist interested in network-based prediction of drug-target interactions. Basically, he was doing prediction in bipartite networks and his motivation moved my interest to verify whether the local community paradigm was valid
02:20
and could help to improve in prediction also in bipartite network topologies. Well, if you are interested to know whether it does, please read this new article and let me know your opinion. A final thanks to Josephine Thomas and Claudio Durán, the other authors of this new article, for their important contribution.
02:43
Many thanks to Carlo Vittorio Kenistracci from Honolulu. Honolulu, yes, it is raining outside.