We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere

00:00

Formale Metadaten

Titel
Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere
Serientitel
Anzahl der Teile
62
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We form sub-micrometer-sized vapor bubbles around a single laser-heated gold nanoparticle in a liquid and monitor them through optical scattering of a probe laser. Bubble formation is explosive even under continuous-wave heating. The fast, inertia-governed expansion is followed by a slower contraction and disappearance after some tens of nanoseconds. In a narrow range of illumination powers, bubble time traces show a clear echo signature. We attribute it to sound waves released upon the initial explosion and reflected by flat interfaces, hundreds of microns away from the particle. Echoes can trigger new explosions. A nanobubble's steady state (with a vapor shell surrounding the heated nanoparticle) can be reached by a proper time profile of the heating intensity. Stable nanobubbles could have original applications for light modulation and for enhanced optical–acoustic coupling in photoacoustic microscopy.
FormationsflugLuftstromNiederspannungsnetzGleitlagerElementarteilchenphysikVideotechnikLithium-Ionen-AkkumulatorRasenmäherFlüssigkeitBlasenkammerSensorComputeranimation
LaserErwärmungFamilie <Elementarteilchenphysik>InfrarotlaserBlasenkammer
HimmelBlasenkammerInfrarotlaserIntensitätsverteilungLuftstromSondeLichtstreuungGauß-BündelComputeranimationDiagramm
IntensitätsverteilungBlasenkammerProfilwalzenProzessleittechnikSchallErwärmungDiagramm
Airbus 300IntensitätsverteilungFlüssigkeitSensorSchwache LokalisationLongitudinalwelleBlasenkammerStörgrößeSchmalspurlokomotiveErwärmungKeimbildungTonbandgerätMorgenMikroskopDiagramm
AmplitudeMario Occhiuto ArchitettureLongitudinalwelleLeistungssteuerungGewichtsstückFehlprägungSchmitt-TriggerErwärmungDiagramm
IntensitätsverteilungAmplitudeAmplitudeSchallBlasenkammerEchoOberflächeFormationsflugUnterwasserfahrzeugTonbandgerätSchmiedenDiagramm
IntensitätsverteilungAmplitudeSupernovaüberrestWelle <Maschinenbau>ModellbauerElektrisches SignalBlasenkammerSchiffsmastFunkgerätSchallSensortechnikObjektträgerOptisches InstrumentGruppenlaufzeitLongitudinalwelleBasis <Elektrotechnik>GlasWaferLichtSensorImmersionsobjektivSondeImmersion <Optik>EnergieniveauFaraday-EffektTeilchenHochfrequenzübertragungDiagramm
AmplitudeBlasenkammerSchmitt-TriggerGlasStörgrößeSensorEnergieniveauSchmitt-TriggerMessungModellbauerWelle <Maschinenbau>Faraday-EffektTeilchenMikroskopErwärmungBlasenkammerSchlauchkupplungStörgrößeArmbanduhrSchallLongitudinalwelleComputeranimation
Transkript: Englisch(automatisch erzeugt)
Hello, my name is Lei Hou. I'm going to tell you something about wiper bubbles with nanometer size, or nanobubbles, that we generated around gold nanoparticles in liquids and detected optically with nanosecond time resolution. We use a continuous laser at 532 nm to heat gold nanospheres and generate
nanobubbles, and we probe the nanobubbles by scattering a laser beam at 850 nm. The intensity of the scattered probe beam provides information about the dynamics of nanobubbles in the nanosecond regime.
First, we found that even under continuous heating, nanobubbles form and collapse very rapidly in an inertia-limited process we call explosive. The duration of one bubble is about some tens of nanoseconds. Many cycles of such fast bubble events repeat at a rate of a few MHz as shown here.
From the time dependence of this nanobubble instability as shown in this red curve, we propose that the liquid layer surrounding the nanosphere first must become overheated. Then the nucleation of a bubble is followed by evaporation of the overheated liquid and expansion of the bubble.
The expansion is barely resolved by our detector and appears to be determined by inertia. We therefore propose that this phenomenon is similar to explosive boiling previously observed in microscopic experiments. Second, within a narrow range of heating power, the nanobubble becomes very sensitive to weak local perturbations such as acoustic waves.
Here we showed an example of echo trigger nanobubbles when the heating power is constant but above some critical power. We average a number of these bubble events by taking the half-maximal of the red edge and obtain the red curve shown here.
Besides the first peak of fast bubble formation and collapse, we can observe a shoulder and sometimes a second peak appearing at well-defined delays after the first peak. We attribute these to the echoes of sound waves released after the first explosion reflected by glass-oil interfaces.
First between glass light and immersion oil, second between immersion oil and friendliness of objective. The reflected sound wave can modulate the bubble signal or even trigger a second or third explosion. These observations suggest that the nanobubble could serve as a two-way transducer between optical and acoustic
waves and could form the basis of an acoustic reader similar to those working with electromagnetic waves. In summary, we optically generate and probe wafer bubbles with high time resolution on a single particle level.
We observe nanobubble instability even under constant heating. Weak perturbations like sound wave can trigger new bubbles. Our findings open the possibility of using a nanobubble as an acoustic sensor or to enhance coupling to acoustic waves in photo-acoustic microscopy. Thanks for watching.