We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The search for Bose–Einstein condensation of excitons in Cu2O: exciton-Auger recombination versus biexciton formation

00:00

Formale Metadaten

Titel
The search for Bose–Einstein condensation of excitons in Cu2O: exciton-Auger recombination versus biexciton formation
Serientitel
Anzahl der Teile
49
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Excitons in high-purity crystals of Cu2O undergo a density-dependent lifetime that opposes Bose–Einstein condensation (BEC). This rapid decay rate of excitons at a density n has generally been attributed to Auger recombination having the form , where A is an exciton-Auger constant. Various measurements of A, however, have reported values that are orders-of-magnitude larger than the existing theory. In response to this conundrum, recent work has suggested that excitons bind into excitonic molecules, or biexcitons, which are short-lived and expected to be optically inactive. Of particular interest is the case of excitons confined to a parabolic strain well—a method that has recently achieved exciton densities approaching BEC. In this paper we report time- and space-resolved luminescence data that supports the existence of short-lived biexcitons in a strain well, implying an exciton loss rate of the form with a biexciton capture coefficient C(T) proportional to , as predicted by basic thermodynamics. This alternate theory will be considered in relation to recent experiments on the subject.
PhotodissoziationNiederspannungsnetzGleitlagerElementarteilchenphysikFormationsflugVideotechnikFrenkel-ExzitonDissoziationAuger-EffektHalbleiterExzitonKondensatorBlatt <Papier>Angeregter ZustandKalenderjahrComputeranimation
HalbleiterWasserstoffatomAnalogsignalA6M Zero-SenFahrgeschwindigkeitAtombauFrenkel-ExzitonElektronSchwarzes LochKondensatorAtomistikDiscovery <Raumtransporter>GasAngeregter ZustandRekombinationsleuchtenExzitonBugHalbleiterBestrahlungsstärkeDefektelektronComputeranimation
Frenkel-ExzitonLaserSensorSpektrometerPhotonKryostatElektronPhotodissoziationSchwarzes LochNiederspannungsnetzIntensitätsverteilungFrenkel-ExzitonLocherElektronAngeregter ZustandProof <Graphische Technik>PhotonTemperaturOptisches SpektrumNiederspannungsnetzExzitonDissoziationDefektelektronTiefdruckgebietLaserEnergieniveauComputeranimation
GasdichteFrenkel-ExzitonExzitonLaserAbsorptionWolkengattungSchlichte <Textiltechnik>FernordnungHandyExzitonFrenkel-ExzitonGasInfrarotlaserErdefunkstelleGauß-BündelSpeckle-InterferometrieGasdichteNanometerbereichComputeranimation
GasdichteFrenkel-ExzitonAuger-EffektMessungPhotodissoziationExzitonKlangeffektGasdichteFrenkel-ExzitonExzitonImpulsübertragungAuger-EffektTemperaturRekombinationsleuchtenKondensatorLocherElektronBestrahlungsstärkeBegrenzerschaltungPhotodissoziationDissoziationComputeranimation
FernordnungScheinbare HelligkeitTemperaturabhängigkeitAuger-EffektGleichstromProzessleittechnikPhononNatürliche RadioaktivitätAuger-EffektGasdichteGasFrenkel-ExzitonExzitonTemperaturMessungComputeranimationDiagramm
BewegungsmessungRandspannungModellbauerFormationsflugFrenkel-ExzitonAuger-EffektFamilie <Elementarteilchenphysik>ExzitonAuger-EffektFrenkel-ExzitonBewegungsmessungKernstrahlungWasserstoffatomTemperaturGasFormationsflugTeilchenrapiditätBestrahlungsstärkeKlangeffektAngeregter ZustandComputeranimation
ExzitonFrenkel-ExzitonElastische SpannungKümpelnEnergielückeParabolantenneRandspannungSchaltschützGasEnergielückeHalbleiterGlasElastische SpannungPatrone <Munition>TeilchenfalleExzitonSchiffsklassifikationBestrahlungsstärkeComputeranimation
BewegungsmessungPhotodissoziationElektron-Phonon-WechselwirkungRandspannungPhotonErdefunkstelleOptisches SpektrumElektron-Phonon-WechselwirkungAngeregter ZustandKernstrahlungRandspannungFrenkel-ExzitonGleichstromBewegungsmessungFormationsflugKristallwachstumBestrahlungsstärkeRutschungStringtheorieDiagramm
TemperaturIonisierende StrahlungFrenkel-ExzitonRutschungComputeranimation
Transkript: Englisch(automatisch erzeugt)
Our paper reports experiments on the search for Bose-Einstein condensation of excitons in the semiconductor cuprous oxide. This system has been studied for a number of years, but a controversial issue remains. Here's the discovery of Bose-Einstein condensation in a gas of atoms.
At 170 nanokelvin, atoms dropped into the lowest momentum state. In a photoexcited semiconductor, the role of an atom is the exciton, a bound electron-hole pair. Could a gas of excitons undergo Bose condensation? Here's the experiment.
The crystal is cooled to 2 degrees Kelvin and excited by a laser, creating excitons which diffuse from the surface. The electron and hole in an exciton recombine, emitting a red photon. At low excitation levels, the spectrum exhibits a classical distribution of energies at the crystal temperature.
Here's an image of our 2 mm crystal with a green laser beam exciting the surface. The expanded view shows the cloud of excitons diffusing into the crystal. The size of the cloud depends on the lifetime and mobility of an exciton.
Our experiments time-resolve both the total number of excitons and the gas volume in order to measure the density of the gas versus time. Unfortunately, as the gas density is increased, the exciton lifetimes decrease, limiting the density to well below that for Bose condensation.
This density-dependent lifetime has been attributed to Auger recombination. Two excitons collide and one recombines, giving large kinetic energies to the remaining electron and hole,
which eventually thermalize into a single exciton. The decay time of luminescence gives the Auger constant A as a function of temperature. Theoretically, the Auger constant increases with rising gas temperature, and early experiments seem to support this.
However, time-resolved measurements of exciton density show an inverse temperature dependence for A, and its four orders of magnitude larger than predicted by Auger theory. Our proposed answer to this puzzle is the binding of excitons into biaxitons.
The inverse temperature dependence of the exciton decay rate is consistent with the formation of excitonic molecules, like two hydrogen atoms forming an H2 molecule. Biaxitons dominate at low temperature and have a very rapid Auger decay.
In effect, the exciton Auger constant is replaced by the biaxiton capture coefficient, which is inversely proportional to gas temperature and explains the exciton lifetime data. Consider a gas of excitons trapped in a potential well produced by stressing the crystal with a rounded glass plunger.
Exitons created at the crystal's surface are drawn into the potential well, where the stress is highest, and the semiconductor band gap is lowest, producing an effective trap for the excitons.
Measured here is the luminescence spectrum of strain-confined excitons, showing both ortho- and para-exciton luminescence assisted by phonons. The decay of exciton luminescence after direct excitation in the strain well is explained by the formation of biaxitons.
The capture coefficient C agrees with that measured for the unstressed crystal. The final slide is a brief summary of conclusions and perspectives.