We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap

00:00

Formale Metadaten

Titel
Manifestations of geometric phase and enhanced spin Hall shifts in an optical trap
Serientitel
Anzahl der Teile
49
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The spin orbit interaction (SOI) of light has been the focus of recent research due to the fundamental consequences and potential applications in diverse systems, ranging from inhomogeneous anisotropic media to engineered plasmonics and metamaterial strutures. Here, we demonstrate perhaps one of the simplest means to study SOI and the spin Hall shift (SHS) using a standard Gaussian TEM00 beam in an optical trap. Our system exploits the versatility and interference generated in a stratified medium to control and manipulate SOI and transfer the resulting angular momentum to optically trapped microparticles. We show that even such a simple setup can lead to an order of magnitude enhancement in the SHS compared to the subwavelength shifts typically obtained. Importantly, this leads to the generation of doughnut-like mode structures from a fundamental Gaussian beam, as well as controlled rotation of mesoscopic particles using a linearly polarized Gaussian beam that lacks intrinsic angular momentum. The local optical torque leading to rotation of the particles is a direct measure of the local spin angular momentum (SAM) density of the field. Our measurement is the first experimental demonstration of using a probe particle to measure the SAM density for nonparaxial fields.
NiederspannungsnetzElementarteilchenphysikGleitlagerSpinHall-EffektSchwingungsphaseVideotechnikOptisches InstrumentComputeranimation
KalenderjahrLeistenLichtBlatt <Papier>Besprechung/Interview
SOI-TechnikAM-Herculis-SternTeilchenfalleLichtManipulatorGauß-BündelBlei-209Trajektorie <Meteorologie>Blatt <Papier>KlangeffektBildqualitätRotationszustand
WindVerpackungFaraday-EffektGasdichteSpinUhrwerkGleisketteKlangeffektAktives MediumZugangsnetzHadronenjetBlatt <Papier>Gauß-BündelBrechzahlEinbandmaterialRotverschiebungHall-EffektTeilchenfalleBesprechung/Interview
Immersion <Optik>ObjektträgerGlasEinbandmaterialAktives MediumEinbandmaterialMikroskopImmersionsobjektivComputeranimation
ModellbauerBlatt <Papier>Besprechung/Interview
SOI-TechnikLinearmotorPolarisierte StrahlungBrewster-WinkelBlatt <Papier>DiffraktometerKlangeffektDreidimensionale IntegrationLinearmotorIntensitätsverteilungHobelGasdichteComputeranimation
KlangeffektLinearmotorLichtHobelSpin-Hall-EffektFormationsflugRaumfahrt
SchubvektorsteuerungSpinHall-EffektOptisches InstrumentLinearpolarisationElektronisches BauelementPolarisierte StrahlungRotverschiebungTransversalwelleBrennweiteHobelGasdichteTransversalwelleElektronisches BauelementLichtFamilie <Elementarteilchenphysik>AM-Herculis-SternLongitudinalwelleFörderleistungComputeranimation
Akustische MikroskopieRotverschiebungInterstellare MaterieSternmotorElementarteilchenHobelAM-Herculis-SternFamilie <Elementarteilchenphysik>ImpaktEisenbahnbetriebComputeranimation
SynthesizerSatz <Drucktechnik>TeilchenKoerzitivfeldstärkeBesprechung/Interview
KoerzitivfeldstärkeMetallschichtADSLQuarzuhrSatzspiegelErsatzteilKette <Zugmittel>FeldeffekttransistorTeilchenRelative DatierungMaßstab <Messtechnik>Computeranimation
MikroskopSpinRaumfahrtzentrumGasdichteErsatzteilPhotodiodeElementarteilchenWarmumformenLichtBlatt <Papier>NanotechnologieBesprechung/Interview
SternmotorKlangeffektDifferentielle RotationSpinElementarteilchenGleichstromTeilchenFlugsimulatorGasdichte
RotationszustandGasdichteAkustische MikroskopieGasdichteNiederspannungsnetzGauß-BündelSpinGleichstromIntensitätsverteilungGewichtsstückRotationszustandComputeranimation
QuarzuhrTonkassetteRotationszustandPatrone <Munition>Gauß-BündelGleichstromComputeranimation
SOI-TechnikSpinOptisches InstrumentHall-EffektRotverschiebungSondeTeilchenAtmosphäreAktives MediumSchwingungsphaseIntensitätsverteilungBrennweiteManschette <Maschinenbau>HobelGasdichtePolarisierte StrahlungSpin-Hall-EffektGasdichteSpinTeilchenHobelAktives MediumSondeLithium-Ionen-AkkumulatorKlangeffektSchwingungsphaseSeilComputeranimation
Transkript: Englisch(automatisch erzeugt)
Hi, I'm Oyun Banerjee and I have an optical tweezers lab here in IICR Kolkata. So me and my collaborators are going to talk to you about our recent paper in NJP on the spin-orbiting interaction of light in optical tweezers. Optical tweezers employ a tightly focused beam to trap and manipulate microparticles
and this tight focusing leads to the spin-orbiting interaction of light or SOI of light as we call it, which leads to an interdependence of the polarization and trajectory of the propagating light. So what we show in this paper is that the effects of SOI can be enhanced in optical tweezers by using a stratified medium in the path of the trapping beam.
The enhanced SOI and associated spin hall shifts actually cause an increase in the trapping volume and also creates regions of high spin angular momentum density where single microparticles can be trapped and rotated controllably by using just a simple linearly polarized Gaussian beam having no intrinsic angular momentum.
The stratified medium is created by using a polymer cover slip that is refractive index mismatched with the microscope objective immersion oil as we see in this cartoon here. Hi, I am Dilma Laghosh. I have a bio-optics and nano-photonics laboratory at IICR Kolkata and I have helped in developing the theoretical treatment for this paper.
To model tight focusing, we used a variant of the De Weil theory. The details of this theory can be found in our paper. Finally, the intensity at the focal plane can be expressed by this expression where I0, I1 and I2 are the diffraction integrals.
One can see that the total intensity depends on the polarization angle psi. This is called the linear diatrenation effect which is a manifestation of the geometrical phase. Finally, this linear diatrenation is manifested as formation of distinct lobes in the focal plane as shown in this simulation. The other interesting manifestation is the spin hall effect of light
which arises due to the input polarization dependent longitudinal component of the field and this leads to generation of extrinsic orbital angular momentum and transversal flow of energy. This eventually leads to generation of regions of opposite circular polarization near the focal plane as shown here.
In fact, a particle trapped in this region will start spinning. Hello, my name is Somojit Roy. My laboratory EFAML at ISAR Kolkata specializes in the synthesis of soft oxometallates. Peapod shaped particles used in this study are prepared from a phospholipid caking type polyoxometallate precursor
and are typically of colloidal length scales. Hi, I am Basadev. I have worked with Dr. Ian Balaji and I have been involved in the experimental and simulation work of this particular paper. This here is the microscope that we have used for the experiment and the light enters to the back port of the microscope and comes out to the side port and goes into the camera.
Part of the light also goes into the quadrant photodiode. Continuing from our simulations, if you have a peapod shaped particle at one of the high spin angular momentum density regions the particle starts spinning and we can even change the direction of spin by placing it on the region having opposite sign of the spin angular momentum density. The rotation can also be controlled by having two x-polarized trapping beams
focused adjacent to each other and the spin angular momentum density distribution for the two beams will look like this with the regions of opposite spin adjacent to each other. If the beams are overlapped then for equal intensities the net spin angular momentum density in the overlapping region is zero. Thus turning on the second beam stops rotation. However, if you have different intensities one should be able to change the direction of rotation.
This is the first case where turning on the second beam stops the rotation and this is the second case where turning on the second beam reverses the direction of rotation. To summarize, SOI in optical tweezers is amplified in the presence of a stratified medium.
SOI leads to two distinct effects, a spin redirectional geometric phase and a large spin hall effect which creates regions of large spin angular momentum density near the focal plane of the optical tweezers. Trapped particles can actually be controllably rotated in those regions.
Finally, our experiments are the first instance of using probe particles to actually measure the spin angular momentum density of non-peraxial fields.