General features of the relaxation dynamics of interacting quantum systems
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 49 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38717 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
16
00:00
NiederspannungsnetzGleitlagerElementarteilchenphysikVideotechnikRelaxationszeitLuftstromFeldquantComputeranimation
00:03
ElementarteilchenphysikFeldquantRelaxationszeitLuftstromElektrische StromdichteFeldquantThermalisierungWarmumformenLuftstromRelaxationszeitComputeranimation
00:21
LuftstromFeldquantThermalisierungElementarteilchenphysikRelaxationszeitStörgrößeAngeregter ZustandThermalisierungComputeranimation
00:33
ElementarteilchenphysikFeldquantLuftstromRelaxationszeitHi-FiFeldeffekttransistorChirpBlatt <Papier>Angeregter ZustandGasdichteFeldeffekttransistorEchoComputeranimation
00:52
Hi-FiAngeregter ZustandHi-FiComputeranimation
01:11
Hi-FiNiederspannungsnetzNiederspannungsnetzHi-FiAngeregter ZustandFeldeffekttransistorComputeranimation
01:21
FeldstärkeStörgrößeAngeregter ZustandOptisches SpektrumFeldstärkeNiederspannungsnetzWarmumformenStörgrößeComputeranimation
01:40
StörgrößeHi-FiRadioaktivitätHi-FiStörgrößeNiederspannungsnetzDiagramm
01:50
Hi-FiNiederspannungsnetzNiederspannungsnetzStörgrößeSeeschiffHi-FiBegrenzerschaltungDiagramm
02:11
BuntheitHi-FiNiederspannungsnetzNiederspannungsnetzVideotechnikHi-FiKepler-BewegungStörgrößeBuntheitArmaturenbrettFeldeffekttransistorDiagramm
02:47
Matrize <Umformen>FeldquantHi-FiSattelkraftfahrzeugSchmucksteinWalken <Textilveredelung>VideotechnikHi-FiNiederspannungsnetzBlatt <Papier>Matrize <Umformen>Patrone <Munition>TeilchenRauschzahlComputeranimationDiagramm
03:28
ElementarteilchenphysikFeldquantRelaxationszeitLuftstromCocktailparty-EffektBlatt <Papier>KopfstützeComputeranimation
Transkript: Englisch(automatisch erzeugt)
00:05
Our work, General Features of the Relaxation Dynamics of Interacting Quantum System, aims at advancing the current understanding of non-equilibrium quantum physics, which is much less understood than equilibrium quantum physics.
00:20
We study numerically and analytically the dynamics of isolated interacting quantum systems that are taken out of equilibrium instantaneously. This instantaneous perturbation is known as a quench. We analyze the probability of finding the same initial state later on in time, which is known as fidelity, and is also related to the Lohschmidt echo.
00:41
In this movie we talk only about our results for the fidelity, but in our paper you will also find results for the evolution of the Shannon entropy and of few body observables. The fidelity is the overlap between the initial state and the evolved one. The initial state is an eigenstate of a certain initial Hamiltonian. This Hamiltonian is quenched into a new final Hamiltonian, and the initial state now evolves
01:06
according to the eigenvalues and eigenstates of the final Hamiltonian. We can then see that the fidelity is just the Fourier transform of the energy distribution of the initial state. If we know this distribution, we know the behavior of the fidelity.
01:21
When the initial state evolves according to Hamiltonians that have only two body interactions, such as the spin-half systems that we consider in our work, the energy distribution of the initial state depends on the strength of the quench. For a state close to the middle of the spectrum of the final Hamiltonian, we see that, if the perturbation is very weak, the energy distribution is similar to a delta
01:45
function, and the fidelity decay is therefore very slow. As the perturbation increases, the energy distribution broadens. When the shape becomes Lorentzian, the fidelity decay is quadratic for short times, as expected from perturbation theory, and then it switches to an exponential decay,
02:05
since the Fourier transform of a Lorentzian is exponential. Finally, in the limit of strong perturbation, the energy distribution becomes Gaussian, and the fidelity decay is also Gaussian. Note that this Gaussian decay can hold all the way to saturation.
02:25
This dashed line indicates the saturation point, that is, the infinite time average of the fidelity. After this point, the fidelity simply fluctuates. The Gaussian behavior corresponds to the fastest fidelity decay in the scenario of quenches
02:41
involving realistic systems with two body interactions, but this decay can be even faster if the final Hamiltonian is a full random matrix. Full random matrices are not realistic because they imply the simultaneous interactions of many particles, but they serve to set the lower bound of the fidelity decay of quenched
03:03
many-body quantum systems. In this case, the energy distribution has a semicircular shape, reflecting the density of states of full random matrices. The analytical expression for the fidelity decay now involves a Bessel function of first
03:20
kind. It corresponds to the solid line in this figure, while the circles are numerical results. We hope you will now enjoy reading the rest of the paper. Thank you for your attention.
Empfehlungen
Serie mit 14 Medien