We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exploring the adaptive voter model dynamics with a mathematical triple jump

Formale Metadaten

Titel
Exploring the adaptive voter model dynamics with a mathematical triple jump
Serientitel
Anzahl der Teile
49
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Progress in theoretical physics is often made by the investigation of toy models, the model organisms of physics, which provide benchmarks for new methodologies. For complex systems, one such model is the adaptive voter model. Despite its simplicity, the model is hard to analyze. Only inaccurate results are obtained from well-established approximation schemes that work well on closely-related models. We use the adaptive voter model to illustrate a new approach that combines (a) the use of a heterogeneous moment expansion to approximate the network model by an infinite system of ordinary differential equations (ODEs), (b) generating functions to map the ODE system to a two-dimensional partial differential equation (PDE), and (c) solution of this partial differential equation by the tools of PDE-theory. Beyond the adaptive voter models, the proposed approach establishes a connection between network science and the theory of PDEs and is widely applicable to the dynamics of networks with discrete node-states.