Compression stiffening of brain and its effect on mechanosensing by glioma cells
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 49 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38709 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
16
00:00
NiederspannungsnetzKolbenverdichterElementarteilchenphysikGleitlagerVideotechnikComputeranimation
00:03
KolbenverdichterRegenWarmumformenComputeranimation
00:23
TissueElektrochemische BearbeitungMatrize <Umformen>TissueZwischengitteratomFestkörperDruckfeldBehälterMatrize <Umformen>MultiplizitätWeltraumHadronenjetNanotechnologieSatzspiegelLuftdruckAngeregter ZustandComputeranimationDiagramm
01:01
GlanzSchiffstechnikMatrize <Umformen>TissueFernordnungProtuberanzComputeranimation
01:15
KompressibilitätWasserkraftRasterkraftmikroskopieTissueWerkzeugEnergieniveauReglerOptischer SchalterFernordnungMessungRandspannungGelFaraday-EffektSensorWasserstoffatomStoff <Textilien>MechanikerinHochspannungsmastSpeise <Technik>FeldstärkeMikroskopSatzspiegelSchlichte <Textiltechnik>
01:56
BeschichtungSubstrat <Mikroelektronik>GleitsichtglasDurchführung <Elektrotechnik>ViskoelastizitätSpannungsabhängigkeitTissueSatz <Drucktechnik>Stoff <Textilien>Masse <Physik>PresspassungPatrone <Munition>GrauDiagrammFlussdiagramm
02:35
RandspannungAirbus 300KolbenverdichterLastkraftwagenDiagramm
02:42
MaiTiefdruckgebietTissueRandspannungGleitsichtglasDiagramm
02:51
KolbenverdichterRandspannungMaterialLuftdruckBehälterStoff <Textilien>IPAD <Kernspektroskopie>TissueCocktailparty-EffektUnterseebootEisenbahnbetriebViskoelastizitätTemperaturabhängiger WiderstandLinearmotorKlangeffektKristallgitterNanometerbereichDiagramm
Transkript: Englisch(automatisch erzeugt)
00:03
Hello and welcome to this video abstract. My name is Katarzyna Pogoda and I'm a PhD student at the Institute of Nuclear Physics Polish Academy of Sciences in Krakow, Poland. I would like to introduce you to our latest work that was carried out at the laboratory of professor Paul Janmej at the University of Pennsylvania in Philadelphia, USA.
00:24
A common feature of many solid tumors and other diseased tissues is that they are stiffer than the normal tissue in which they arise and often have increased interstitial fluid pressures and solid tissue stress. Tissue stiffening, usually quantified as an increase in shear storage or
00:41
Young's modulus, arises from multiple mechanisms, including increased or chemically altered extracellular matrix production, increased matrix cross-linking or increased intracellular tensions. The hypothesis that altered extracellular matrix is essential to the increased stiffening of tumorous stroma presents an interesting issue in the context of glioblastoma and other brain tumors, because brain and other
01:05
CNS tissue is conspicuously devoid of the filamentous protein-based ECM characteristic of most mesenchymal and endothelial environments. In order to verify if the isolated glial cells and astrocytes are sensitive to the substrate stiffness, we used hydrogel systems with defined mechanical properties.
01:26
Atomic force microscopy was used as a sensitive tool for detection of changes in actin cytoskeleton at the single cell level. To determine whether increased glioma stiffness in vivo can drive the behavior of glioma cells, we evaluated the stiffness of glioma biopsies versus normal brain tissue using a microindenter.
01:46
Strain control geometry was used to measure centimeter-sized normal brain tissues and to simulate their response to physiologically relevant strains by uniaxial compression. In our study, we showed that glioma cells respond strongly in vitro to substrate stiffness.
02:01
Moreover, LM229 glioma cells spread significantly more than normal astrocytes over the same range. The elastic modulus of the glioma cell cortex also depends on substrate stiffness, but in this case, normal astrocytes become stiffer than the glioma cells. The strong dependence of glioma cell phenotype on substrate stiffness in a range that is
02:23
relevant to brain rheology suggests that potential changes in tissue viscoelasticity coinciding with tumor development might contribute to progression of glioma growth as hypothesized for other tumor types. Contrary to our expectation based on the stiffness responses of glioma cells in vitro, the Young's
02:42
modulus of glioma tissue measured by indentation at low strain was indistinguishable from that of normal brain. However, when indentations were made at increasing depth, corresponding to larger compressions of the tissue, the effective Young's modulus increased for glioma more strongly than for normal brain.
03:02
For a simple linear viscoelastic material, shear modulus is approximately independent of uniaxial compression, but nonlinear viscoelastic materials such as brain structures have more complex rheological properties. The unusual uniaxial deformation-dependent increase in the shear storage modulus occurs only in compression, but not in extension.
03:23
By measuring the normal force exerted when samples of brain are compressed or extended, the compressive stress required to alter the shear modulus can be computed. As presented here, the shear modulus of normal brain can be increased nearly four times by compressive stress in a range of 3 to 15 millimeters mercury.
03:42
This outcome supports the hypothesis that compression effectively stiffens the environment of glioma cells and that in situ the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness. Enjoy your reading and thanks for your attention.