Unusual ferromagnetic YMnO3 phase in YMnO3/La2 / 3Sr1 / 3MnO3 heterostructures
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 49 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38699 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
16
00:00
FerromagnetismusSchwingungsphaseNiederspannungsnetzKarmesinGleitlagerElementarteilchenphysikVideotechnikWarmumformenComputeranimation
00:05
Elastische SpannungFerromagnetismusBesprechung/Interview
00:11
SchwingungsphaseSource <Elektronik>FerromagnetismusAntiferromagnetismusVermittlungseinrichtungRotverschiebungRuhestromFerromagnetismusOberflächeBlechKalenderjahrMaterialComputeranimation
00:21
RotverschiebungKristallgitterSchlauchkupplungKopfstützeWarmumformenFerromagnetismusElastische SpannungBarkRotverschiebungBlatt <Papier>Diagramm
00:49
SchwingungsphaseOberflächeKompressibilitätMagnetismusNachmittagSpeckle-InterferometrieOberflächeSchwingungsphaseLeistenKristallgitterRutschungBarkMagnetismusFerromagnetismusGrundzustandComputeranimation
01:42
FerromagnetismusSchwingungsphaseRasterkraftmikroskopieMagnetismusKompressibilitätUmlaufbahnDrehenOberflächeSchwingungsphaseComputeranimation
02:00
RotverschiebungFerromagnetismusDrehmasseRuhestromVermittlungseinrichtungDrehmasseRuhestromFuß <Maßeinheit>PaarerzeugungPatrone <Munition>ChirpGauß-BündelKristallgitterWerkzeugSpinLeistenLinealImpaktMagnetisches DipolmomentSource <Elektronik>Comte AC-4 GentlemanAbstandsmessungDrehenFerromagnetismusMagnetismusAkustikSchwingungsphaseFernordnungRotverschiebungOberflächeComputeranimation
03:29
Dreidimensionale IntegrationSchwingungsphaseRotverschiebungOberflächeMagnetisierungSchwingungsphaseRotverschiebungAbendSatz <Drucktechnik>KristallgitterFerromagnetismusArmbanduhrComputeranimation
03:48
ElementarteilchenphysikSchmitt-TriggerKarmesinHERMES <Teilchendetektor>SchwingungsphaseArmbanduhrComputeranimation
Transkript: Englisch(automatisch erzeugt)
00:04
Hi, I'm Camino Thierry and I will introduce you to the results of this work. While in ferromagnets we have a stress loop, horizontal shifts are commonly observed at the interface between ferromagnetic and adferromagnetic materials.
00:20
Other interface phenomena, like the vertical shifts, are less observed and studied. Recently, a large vertical shift in the ferromagnetic stress loop was observed in immunolecimal structures. In this paper we will explain it, providing fundamental insights about the structural electronic magnetic
00:40
aspects, as all of these are very important due to the coupling between degrees of freedom. Bark elasimo is ferromagnetic, bark immuno is anti-ferromagnetic, therefore the immunolecimal structure is expected to be a ferromagnetic and anti-ferromagnetic interface. In this slide you can see the magnetic ground state of our structure and in the right side we have a schematic picture.
01:07
In our simulation we have two LSMO layers, L0 is the interface layer, the orange layer L1 is the immuno layer closest to the interface, L2 and L3 are the inner layers.
01:21
We have found that LSMO is ferromagnetic as expected and the interface layer L0 is ferromagnetic too. Remarkably, we have found an unusual ferromagnetic phase, also in immuno layer L1. This ferromagnetic phase is only present at the interface, the inner layers remain anti-ferromagnetic.
01:42
At this point we have to study the ferromagnetic phase of bark immuno. These are the densities of state for the two magnetic phases. The ferromagnetic phase has a large bandwidth, but is still insulating. Moreover, it presents a very large acoustic field. Now we have two ferromagnetic phases in the ideal structure, one with small acoustic field and another with large acoustic field.
02:07
Ferromagnets with small acoustic field are called soft, ferromagnets with large acoustic field are called hard. When we apply a magnetic field to the ideal structure, just the moments of the soft ferromagnets can rotate, while the moments in immuno are pinned due to the large acoustic field.
02:26
The picture in the right side shows the magnetic phase when a positive field is applied, all the spins are up. The picture in the left side shows the magnetic phase when a negative field is applied, just as no spins are down, while the hard spins are pinned up.
02:43
These spinned magnetic moments in immuno cause the vertical shift in the stairs loop, hence the vertical shift is due to the magnetization of the anti-ferromagnetic side of the structure. The interface between ferromagnetic and anti-ferromagnetic phase can produce the sketch bias.
03:00
The creation of the pinned magnetic moments in the anti-ferromagnetic phase produces the vertical shift, but the destroyed anti-ferromagnetic order and therefore the sketch bias. Our conclusion supports the idea that horizontal magnetic shifts in the stairs loop tend to exclude each other. In particular, this real structure is the extreme case where we have an
03:21
entire layer of pinned magnetic moments and the sketch bias is completely destroyed. In conclusion, we summarize our three main results. We have found an unusual ferromagnetic immuno phase in this real structure. This ferromagnetic phase is responsible for the large vertical shift experimentally observed.
03:40
We conclude that, in general, horizontal vertical shifts in the stairs loop tend to exclude each other. Thank you for watching.