We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Unusual ferromagnetic YMnO3 phase in YMnO3/La2 / 3Sr1 / 3MnO3 heterostructures

00:00

Formale Metadaten

Titel
Unusual ferromagnetic YMnO3 phase in YMnO3/La2 / 3Sr1 / 3MnO3 heterostructures
Serientitel
Anzahl der Teile
49
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
By means of first-principles density functional calculations, we study the structural, magnetic and electronic properties of YMnO3/MnO3 heterostructures. Although in the bulk the ground state of YMnO3 is an antiferromagnet, the YMnO3/MnO3 heterostructure stabilizes the ferromagnetic (FM) phase in YMnO3 in the interface region over a wide range of Coulomb repulsion parameters. The hypothetical FM phase of bulk YMnO3 is dielectric and due to substantial differences between the lattice constants in the ab plane, a strong magnetocrystalline anisotropy is present. This anisotropy produces a high coercivity of the unusual FM YMnO3 that can explain the large vertical shift in the hysteresis loops observed in recent experiments (Paul et al 2014 J. Appl. Crystallogr. 47 1054). The correlation between weak exchange bias and the vertical shift is proposed, which calls for reinvestigation of various systems showing vertical shifts.
FerromagnetismusSchwingungsphaseNiederspannungsnetzKarmesinGleitlagerElementarteilchenphysikVideotechnikWarmumformenComputeranimation
Elastische SpannungFerromagnetismusBesprechung/Interview
SchwingungsphaseSource <Elektronik>FerromagnetismusAntiferromagnetismusVermittlungseinrichtungRotverschiebungRuhestromFerromagnetismusOberflächeBlechKalenderjahrMaterialComputeranimation
RotverschiebungKristallgitterSchlauchkupplungKopfstützeWarmumformenFerromagnetismusElastische SpannungBarkRotverschiebungBlatt <Papier>Diagramm
SchwingungsphaseOberflächeKompressibilitätMagnetismusNachmittagSpeckle-InterferometrieOberflächeSchwingungsphaseLeistenKristallgitterRutschungBarkMagnetismusFerromagnetismusGrundzustandComputeranimation
FerromagnetismusSchwingungsphaseRasterkraftmikroskopieMagnetismusKompressibilitätUmlaufbahnDrehenOberflächeSchwingungsphaseComputeranimation
RotverschiebungFerromagnetismusDrehmasseRuhestromVermittlungseinrichtungDrehmasseRuhestromFuß <Maßeinheit>PaarerzeugungPatrone <Munition>ChirpGauß-BündelKristallgitterWerkzeugSpinLeistenLinealImpaktMagnetisches DipolmomentSource <Elektronik>Comte AC-4 GentlemanAbstandsmessungDrehenFerromagnetismusMagnetismusAkustikSchwingungsphaseFernordnungRotverschiebungOberflächeComputeranimation
Dreidimensionale IntegrationSchwingungsphaseRotverschiebungOberflächeMagnetisierungSchwingungsphaseRotverschiebungAbendSatz <Drucktechnik>KristallgitterFerromagnetismusArmbanduhrComputeranimation
ElementarteilchenphysikSchmitt-TriggerKarmesinHERMES <Teilchendetektor>SchwingungsphaseArmbanduhrComputeranimation
Transkript: Englisch(automatisch erzeugt)
Hi, I'm Camino Thierry and I will introduce you to the results of this work. While in ferromagnets we have a stress loop, horizontal shifts are commonly observed at the interface between ferromagnetic and adferromagnetic materials.
Other interface phenomena, like the vertical shifts, are less observed and studied. Recently, a large vertical shift in the ferromagnetic stress loop was observed in immunolecimal structures. In this paper we will explain it, providing fundamental insights about the structural electronic magnetic
aspects, as all of these are very important due to the coupling between degrees of freedom. Bark elasimo is ferromagnetic, bark immuno is anti-ferromagnetic, therefore the immunolecimal structure is expected to be a ferromagnetic and anti-ferromagnetic interface. In this slide you can see the magnetic ground state of our structure and in the right side we have a schematic picture.
In our simulation we have two LSMO layers, L0 is the interface layer, the orange layer L1 is the immuno layer closest to the interface, L2 and L3 are the inner layers.
We have found that LSMO is ferromagnetic as expected and the interface layer L0 is ferromagnetic too. Remarkably, we have found an unusual ferromagnetic phase, also in immuno layer L1. This ferromagnetic phase is only present at the interface, the inner layers remain anti-ferromagnetic.
At this point we have to study the ferromagnetic phase of bark immuno. These are the densities of state for the two magnetic phases. The ferromagnetic phase has a large bandwidth, but is still insulating. Moreover, it presents a very large acoustic field. Now we have two ferromagnetic phases in the ideal structure, one with small acoustic field and another with large acoustic field.
Ferromagnets with small acoustic field are called soft, ferromagnets with large acoustic field are called hard. When we apply a magnetic field to the ideal structure, just the moments of the soft ferromagnets can rotate, while the moments in immuno are pinned due to the large acoustic field.
The picture in the right side shows the magnetic phase when a positive field is applied, all the spins are up. The picture in the left side shows the magnetic phase when a negative field is applied, just as no spins are down, while the hard spins are pinned up.
These spinned magnetic moments in immuno cause the vertical shift in the stairs loop, hence the vertical shift is due to the magnetization of the anti-ferromagnetic side of the structure. The interface between ferromagnetic and anti-ferromagnetic phase can produce the sketch bias.
The creation of the pinned magnetic moments in the anti-ferromagnetic phase produces the vertical shift, but the destroyed anti-ferromagnetic order and therefore the sketch bias. Our conclusion supports the idea that horizontal magnetic shifts in the stairs loop tend to exclude each other. In particular, this real structure is the extreme case where we have an
entire layer of pinned magnetic moments and the sketch bias is completely destroyed. In conclusion, we summarize our three main results. We have found an unusual ferromagnetic immuno phase in this real structure. This ferromagnetic phase is responsible for the large vertical shift experimentally observed.
We conclude that, in general, horizontal vertical shifts in the stairs loop tend to exclude each other. Thank you for watching.