Charge pattern matching as a 'fuzzy' mode of molecular recognition for the functional phase separations of intrinsically disordered proteins
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 40 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38445 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
33
00:00
TEM-WelleSchwingungsphaseNiederspannungsnetzGleitlagerVideotechnik
00:03
SchnittmusterSchwingungsphaseGleitlagerVideotechnikComputeranimation
00:14
Angeregter ZustandSchwingungsphaseFlussdiagramm
00:20
SchwingungsmembranFlussdiagramm
00:26
AntennendiversitySchwingungsphaseDurchführung <Elektrotechnik>Flussdiagramm
00:33
Durchführung <Elektrotechnik>
00:40
WasserdampfElektronisches Bauelement
00:48
H-alpha-LinieBetazerfallSchwingungsphaseBuntheit
00:52
SchwingungsphaseProfilwalzenFlussdiagramm
00:55
SchraubstockH-alpha-LinieFlussdiagramm
00:58
DiagrammFlussdiagramm
01:02
BetazerfallH-alpha-LinieSchwingungsphaseAngeregter ZustandProzessleittechnikTiefdruckgebietDiagramm
01:16
ProfilwalzenFeinkohleSchwingungsphaseSchnittmusterBuntheitComputeranimation
01:32
SchwingungsphaseSchwingungsphaseDrehenComputeranimation
01:36
SchwingungsphaseSchiffsklassifikationAngeregter ZustandSchwingungsphaseComputeranimationDiagramm
01:43
SchwingungsphaseComputeranimation
01:48
SchwingungsphaseAngeregter ZustandModellbauerFestkörperphysikGammaquantStundeDrehenPatrone <Munition>ComputeranimationDiagramm
02:25
Blatt <Papier>Computeranimation
Transkript: Englisch(automatisch erzeugt)
00:04
Hello, this is a video abstract for our new Journal of Physics article. An emerging paradigm in cell biology states that a range of intracellular organelles are formed by liquid-liquid phase separation of proteins and or RNA.
00:24
These membraneless organelles have captivated biologists. Their complex phase behavior arising from interactions between the diverse protein sequences involved provides tantalizing opportunities for the development of theoretical frameworks to understand these biological systems.
00:40
We consider a three-component mixture including two different protein sequences plus water. The three components, depending on their volume ratios, can either form a homogeneous mixture or phase separate into phases alpha and beta. Both beta surrounded by alpha and vice versa are possible.
01:02
Here is a phase diagram to describe this process. First, we have a mixture of our two proteins. This will undergo phase separation to achieve a lower system-free energy yielding states alpha and beta. If two sequences have similar charge patterns, they are going to gather together and form a co-dilute and a co-condensed phase.
01:25
If the two sequences are very different, they exclude each other to form a sequence 1-reach and a sequence 2-reach phase. We use the random phase approximation theory to calculate phase diagrams. Here we plot two phase diagrams of different sequence pairs.
01:42
All original states inside the gray regions undergo phase separation into pairs of phases at the boundaries. We also investigate the three-phase or ternary phase separation using Flory-Hoggins model. In ternary phase separation, the final separated phases are fixed. All original states separate into the same final phases alpha, beta, and gamma.
02:06
The three final states define a triangle of ternary phase separation where all original states within this region will phase separate to the same three states. The three phases can be arranged in different ways, either one condensed phase surrounded by the other or two condensed phases individually.
02:25
Thank you. Hope you enjoy reading our paper.