We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Pairwise entanglement and the Mott transition for correlated electrons in nanochains

00:00

Formale Metadaten

Titel
Pairwise entanglement and the Mott transition for correlated electrons in nanochains
Serientitel
Anzahl der Teile
40
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Pairwise entanglement, calculated separately for charge and spin degrees of freedom, is proposed as a ground-state signature of the Mott transition in correlated nanoscopic systems. Utilizing the exact diagonalization—ab initio, for chains containing hydrogenic-like atoms (at the half filling), we find that the vanishing of the nearest-neighbor charge concurrence indicates the crossover from a partly-localized quantum liquid to the Mott insulator. Spin concurrence remains nonzero at the insulating phase, showing that the decopling of spin and charge degrees of freedom may manifest itself by wavefunctions entangled in spin, but separable in charge coordinates. At the quarter filling, the analysis for shows that spin concurrence vanishes immediately when the charge-energy gap obtained from the scaling with vanishes, constituting a finite-system version of the Mott transition. Analytic derivations of the formulas expressing either charge or spin concurrence in terms of ground-state correlation functions are also provided.
GleitlagerVideotechnik
Integrierte MikrowellenschaltungElektronAprilTheodolitBildqualitätÖffentliches VerkehrsmittelComputeranimation
FestkörperAngeregter ZustandAngeregter ZustandWasserstoffatomSchmiedenFestkörperModellbauer
EnergielückeAngeregter ZustandFestkörperWasserstoffatomReifEnergieniveau
WasserstoffatomAtombauAdapterFestkörperAngeregter ZustandEnergielückeStundeFernordnungWasserstoffatomEnergieniveauReifAbstandsmessungTechnische ZeichnungDiagramm
SattelkraftfahrzeugWasserstoffatomAtombauReifDichtematrixChirpKette <Zugmittel>Patrone <Munition>TargetEisenbahnwagenInduktivitätTelefonLeistenKondensatorModellbauerComputeranimation
Angeregter ZustandMaßstab <Messtechnik>AtombauAngeregter ZustandAtomistikDrechselnTagMinuteComputeranimation
Angeregter ZustandAtombauMaßstab <Messtechnik>Computeranimation
Computeranimation
Angeregter ZustandAtombauSchwingungsphaseSichtweiteTheodolitSchlichte <Textiltechnik>BegrenzerschaltungAtomistikWalken <Textilveredelung>AbstandsmessungKonfektionsgrößeKette <Zugmittel>Faraday-EffektWarmumformenBlatt <Papier>StundeComputeranimation
SchlauchkupplungAntiteilchenWollspinnerSpinner <Handwerker>Chandrasekhar-GrenzeMagnetQuantenfluktuationFernordnungKette <Zugmittel>SchlauchkupplungNanometerbereichMessbecherFuß <Maßeinheit>RaumfahrtEisErwärmungWocheGate <Elektronik>BandwebereiComputeranimation
KonfektionsgrößeEnergielückeColourEnergielückeÖffentliches VerkehrsmittelTheodolitSchlichte <Textiltechnik>ComputeranimationDiagramm
FlüssigkeitWollspinnerSchwingungsphaseFernordnungSpinner <Handwerker>TEM-WelleTagColourUnterlegkeilGate <Elektronik>Blatt <Papier>Computeranimation
TheodolitÖffentliches VerkehrsmittelComputeranimationDiagramm
Spinner <Handwerker>Spinner <Handwerker>ColourWocheAngeregter ZustandHerbstNeutronenkleinwinkelstreuungComputeranimation
MolekülwolkeSchwächungWocheComputeranimation
Transkript: Englisch(automatisch erzeugt)
Pairwise entanglement and the mode transition for correlated electrons in nanochains. When looking at the famous handbook on solid state physics by Charles Kittel, you find a chapter on the tie-binding model with the fascinating feature showing the energy
levels of a very peculiar system. The ring of 20 equally spaced hydrogen atoms, each containing a single 1s orbital. Interaction between electrons are neglected and we have 20 energy levels drawn as functions
of the interatomic distance r, which is the only physical parameter defining the system. Although rings of hydrogen atoms do not exist in nature, they are often studied to benchmark numerical approaches, which may be then applied to more complex systems. Also, a model system allows one to trace the details of interesting phenomena, such as the
metal-insulator transition, which appear in other condensed model systems. When electron-electron interaction is taken into account, there are 4 possible quantum states per atom, leading to the total number of approximately 10 to 12 states for 20 atoms.
Numerical diagonalization of such a system is a challenging task, but can be performed with present-day supercomputers. The system of 20 atoms seems rather small, but the huge size of its Hilbert space allows us to expect that some signatures of quantum phase transition present in the thermodynamic
limit should already be visible, provided we properly choose an observable signaling the transition. In the paper, we focus on two quite different examples, a chain containing one electron per atom, the so-called half-electronic feeling, and the other with one electron
per two atoms, the quarter-feeling. These two situations are substantially different when looking for a possible spontaneous symmetry breaking. In the strong coupling limit, reached for large interatomic distances, the half-filled chain is equivalent to one-dimensional Heisenberg antiferromagnet, and the long-range order
is unstable due to quantum fluctuations. At the quarter-feeling, long-range interactions are involved, and the well-known Mame-Wagner theorem cannot be directly applied. The mode transition at the quarter-feeling can be identified via finite size scaling for the charge-energy gap.
But this technique is sensitive to numerical uncertainties, appearing for methods other than exact diagonalization, and sometimes may lead to confusing results. In this paper, we put forward the entanglement-based criterion for the mode transition. Our central result is the analytical formula relating the concurrence, defined separately
for charge and spin degrees of freedom, to ground-state correlation functions. The only static correlation functions are involved, and the formula is insensitive to the numerator technique applied to determine the correlation functions.
Therefore, the approach can be extended by replacing exact diagonalization by more advanced numerical technique like quantum Monte Carlo or density matrix renormalization group.