We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fully Convolutional Networks for Image Segmentation

Formale Metadaten

Titel
Fully Convolutional Networks for Image Segmentation
Serientitel
Anzahl der Teile
43
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortErlangen, Germany

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Recently, a considerable advancemet in the area of Image Segmentation was achieved after state-of-the-art methods based on Fully Convolutional Networks (FCNs) were developed. The objective of Image Segmentation problem is to label every pixel in the image with the class of its enclosing object or region. This problem is extremely challenging because the method should have strong classification and localization properties at the same time. While being very complicated, image segmentation is an important problem as it has many applications in medicine, autonomous driving and other fields. In our talk, we go through theory of the recent state-of-the-art methods for image segmentation based on FCNs and present our library which aims to provide a simplified way for users to apply these methods for their own problems.