We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AMfe - Finite Elements for Structural Dynamics with Simplicity in Mind

Formale Metadaten

Titel
AMfe - Finite Elements for Structural Dynamics with Simplicity in Mind
Serientitel
Anzahl der Teile
43
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortErlangen, Germany

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Model order reduction is a research field of unbroken interest in structural dynamics. Especially in recent years, methods for reducing nonlinear systems have been developed allowing for more sophisticated simulations, which are highly demanded for parameter studies or optimization. The typical workflow for developing new reduction methods for linear systems is to use commercial finite element code, export the assembled system matrices and then apply new methods in an environment of choice. However, this workflow is not feasible for nonlinear systems, since modifications of the internal operations of the finite element program are indispensable. While commercial codes usually deny access to internal operations, common open source programs are often implemented in compiled languages making prototyping of methods a tedious, complicated task. In this talk, we introduce the finite element toolbox ”AMfe” which is written in Python. In contrast to other open source finite element codes it focuses on nonlinear structural problems, modularity and accessibility and is hence a perfect environment for prototyping of new reduction techniques. The talk gives an overview over what can be done with AMfe and how it is implemented with the help of Scipy, Numpy and the Numpy Fortran Extension f2py.