We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantum Firmware: Engineering error-resistance at the physical level for robust quantum computation

Formale Metadaten

Titel
Quantum Firmware: Engineering error-resistance at the physical level for robust quantum computation
Serientitel
Anzahl der Teile
48
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Realizing functional, useful quantum computers requires that the research community address both fundamental and practical challenges pertaining to how hardware errors are suppressed to tolerable levels. In this talk I will focus on efforts towards the development of dynamical error suppression as "quantum firmware:" protocols that are designed to suppress hardware errors at the physical level. We introduce an efficient, experiment-friendly filter-design framework for understanding the performance of various pulse sequences, making connections with familiar concepts from electrical engineering and digital signal processing. This perspective allows a concise formulation of known sequence characteristics, but also reveals previously unappreciated practical impacts of system-level constraints. In addition to studying dynamical decoupling, we extend this approach to nontrivial logic gates, providing a simple new technique to calculate and suppress hardware gate error rates. We validate the filter-design approach through experiments using trapped atomic ions as a model quantum system. Our results reveal the performance benefits of optimized dynamical decoupling sequences and demonstrate a technique for sequence optimization through multidimensional search and autonomous feedback.