We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Stabilizer quantum codes via the CWS framework

Formale Metadaten

Titel
Stabilizer quantum codes via the CWS framework
Alternativer Titel
Design of additive quantum codes via the codeword-stabilized framework
Serientitel
Anzahl der Teile
48
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Codeword stabilized (CWS) construction defines a quantum code by combining a classical binary code with some underlying graph state. In general, CWS codes are non-additive but become additive stabilizer codes if derived from a linear binary code. Generic CWS codes typically require complex error correction; however, we show that the CWS framework is an efficient tool for constructing good stabilizer codes with simple decoding. We start by proving the lower Gilbert-Varshamov bound on the parameters of an additive CWS code which can be obtained from a given graph. We also show that cyclic additive CWS codes belong to a previously overlooked family of single-generator cyclic stabilizer codes; these codes are derived from a circulant graph and a cyclic binary code. Finally, we present several families of simple stabilizer codes with relatively good parameters, including a family of the smallest toric-like cyclic CWS codes which have length, dimension, and distance as follows: $[[t2+(t+1)2,1,2t+1]]$, t=1,2, ...