We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tasks: you gotta know how to run 'em, you gotta know how to safe' em

Formale Metadaten

Titel
Tasks: you gotta know how to run 'em, you gotta know how to safe' em
Serientitel
Teil
46
Anzahl der Teile
48
Autor
Mitwirkende
Lizenz
CC-Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Web developers often find themselves in situations where server processing takes longer than a user would accept. One very common situation is when sending emails. Although simple and relatively quick task, it requires the communication with an external service. In this situation, it’s not possible to foresee how long that service will take to answer. Not to mention the many unexpected situations that can arise, such as errors and bugs. The solution to this problem is to delegate long lasting tasks while responding quickly to the user. This is the point where we need async tasks. There are some tools available that can assist in this job. In this talk, you will learn about the concepts, caveats and best practices for when developing async tasks. For this, I will use Python’s most popular tool for the task: Celery. Rundown: Setting the context (~3 min) The architecture (~3 min) Brokers Workers Use cases (~2 min) External calls Long computations Data caching Tools available (~1 min) Celery (~16 min) Callbacks Canvas Logging Retrying Monitoring Tests and debugging.