We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Visualizing Fire Department Responses with CartoDB

Formale Metadaten

Titel
Visualizing Fire Department Responses with CartoDB
Serientitel
Anzahl der Teile
183
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2015
ProduktionsortSeoul, South Korea

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Local government fire departments need to demonstrate their performance and efficiency. In this session we will show how CartoDB and Torque are being used to visualize fire department responses to emergency events throughout the city allowing city officials to better understand how they are performing. We will also briefly discuss why routing based on Open Street Maps is not yet sufficient enough to be used for this analysis. Effective Response Force (ERF) is one method that fire departments use to measure their level of success. An ERF is a set of specific resources required to perform a particular task within a set amount of time. For example, the Effective Response Force for a residential building fire, which is less than 200 square meters in size, needs to be four fire engines, one ambulance and a fire chief. These resources may be coming from different fire stations; they may be coming directly from other emergency events. They may even come from neighboring cities. Using CartoDB and Torque we can visualize several things; the expected travel routes each of these resources may have taken, compare these routes to expected drive-times based on GIS road network analysis and also show the order in which each of these resources arrived at the destination.