We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Analysing the Performance of NoSQL vs SQL Databases with Respect to Routing Algorithms.

Formale Metadaten

Titel
Analysing the Performance of NoSQL vs SQL Databases with Respect to Routing Algorithms.
Serientitel
Anzahl der Teile
183
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
Produktionsjahr2015
ProduktionsortSeoul, South Korea

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
With the increased shift towards GeoSpatial Web Services on both the Web and mobile platforms especially in the user­centric services, there is a need to improve the query response time. The traditional routing algorithm requires server to process the query and send the results to a client but here we are focussing on query processing within the client itself. This paper attempts to evaluate the performance of an existing NoSQL database and SQL database with respect to routing algorithm and evaluate whether or not we can deploy the computations on the client system only. While SQL databases face the challenges of scalability and agility and are unable to take the The advantage of the abundant memory and processing power available these days, NoSQL databases are able to use some of these features to their advantage. The non­relational databases are more suited for handling the dynamic rise in the data storage and the increased frequency of data accessibility. For this comparative study, MongoDB is the NoSQL engine while the PostgreSQL is the chosen SQL engine. The dataset is a synthetic dataset of road network with several nodes and we find the The distance between source and destination using various algorithms. As a part of paper The implementation we are planning on using pgRouting for the analysis which currently uses PostgreSQL at the backend and implements almost all the routing algorithms essential in practical scenarios. We have currently analyzed the performance of NoSQL databases for various spatial queries and have extended that work to routing. Initial results suggest that MongoDB performs faster by an average factor of 15x which increases exponentially as the path length and network data size increases in both indexed and non­indexed operations. This implies that non­relational databases are more suited to the multi­user query systems and has the potential to be implemented in servers with limited computational power. Further studies are required to identify its appropriateness and incorporate a range of spatial algorithms within non­relational databases.