We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Stability of time discretizations for semi-discrete high order schemes for kinetic and related PDEs

Formale Metadaten

Titel
Stability of time discretizations for semi-discrete high order schemes for kinetic and related PDEs
Serientitel
Anzahl der Teile
6
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.0 Generic:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
When designing high order schemes for solving time-dependent kinetic and related PDEs, we often first develop semi-discrete schemes paying attention only to spatial discretizations and leaving time continuous. It is then important to have a high order time discretization to main the stability properties of the semi-discrete schemes. In this talk we discuss two classes of high order time discretization, i.e, the strong stability preserving (SSP) time discretization, which preserves strong stability from a stable spatial discretization with Euler forward, and the explicit Runge-Kutta methods, for which strong stability can be proved in many cases for semi-negative linear semi-discrete schemes. Numerical examples will be given to demonstrate the performance of these schemes.
Schlagwörter