We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Query Embeddings: Web Scale Search powered by Deep Learning and Python

Formale Metadaten

Titel
Query Embeddings: Web Scale Search powered by Deep Learning and Python
Serientitel
Teil
45
Anzahl der Teile
169
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Ankit Bahuguna - Query Embeddings: Web Scale Search powered by Deep Learning and Python A web search engine allows a user to type few words of query and it presents list of potential relevant results within fraction of a second. Traditionally, keywords in the user query were fuzzy-matched in realtime with the keywords within different pages of the index and they didn't really focus on understanding meaning of query. Recently, Deep Learning + NLP techniques try to _represent sentences or documents as fixed dimensional vectors in high dimensional space. These special vectors inherit semantics of the document. Query embeddings is an unsupervised deep learning based system, built using Python, Word2Vec, Annoy and Keyvi which recognizes similarity between queries and their vectors for a web scale search engine within Cliqz browser. The goal is to describe how query embeddings contribute to our existing python search stack at scale and latency issues prevailing in real time search system. Also is a preview of separate vector index for queries, utilized by retrieval system at runtime via ANNs to get closest queries to user query, which is one of the many key components of our search stack. Prerequisites: Basic experience in NLP, ML, Deep Learning, Web search and Vector Algebra. Libraries: Annoy.