We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Trade-offs in Distributed Learning

Formale Metadaten

Titel
Trade-offs in Distributed Learning
Serientitel
Teil
1
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In many large-scale applications, learning must be done on training data which is distributed across multiple machines. This presents an important challenge, with multiple trade-offs between optimization accuracy, statistical performance, communication cost, and computational complexity. In this talk I'll describe some recent and upcoming results about distributed convex learning and optimization, including algorithms as well as fundamental performance barriers.