We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A pyramid-shaped blow-up set for the 2d semilinear wave equation

Formale Metadaten

Titel
A pyramid-shaped blow-up set for the 2d semilinear wave equation
Serientitel
Teil
2
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider the semilinear wave equation with subconformal power nonlinearity in two space dimensions. We construct a finite-time blow-up solution with a pyramid-shaped blow-up surface and an isolated characteristic blow-up point at the origin. Our solution is symmetric with respect to both axes, and anti-symmetric with respect to both bisectrices. The blow-up surface is differentiable outside the bisecrtices. On the bisectrices, it only has directional derivatives. As for the asymptotic behavior in similariy variables, the solution converges to the classical one-dimensional soliton outside the bisectrices, and to a genuinely two dimensional stationary solution, on the bisectrices, outside the origin. At the origin, it behaves like the sum of 4 solitons localized on the two axes, with opposite signs for neighbors. This is the first example of a blow-up solution with a characteristic point in higher dimensions, showing a really two dimensional behavior. Moreover, the points of the bisectrices outside the origin give us the first example of non characteristic points where the blow-up surface is non differentiable.