We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Toponogov's theorem and improved Kakeya-Nikodym estimates for eigenfunctions on manifolds of nonpositive curvature

Formale Metadaten

Titel
Toponogov's theorem and improved Kakeya-Nikodym estimates for eigenfunctions on manifolds of nonpositive curvature
Serientitel
Teil
14
Anzahl der Teile
23
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Toponogov's theorem and improved Kakeya-Nikodym estimates for eigenfunctions on manifolds of nonpositive curvature This is joint work with Matthew Blair. Using wave equation techniques and elementary facts from Riemannian geometry, we show that, on negatively curved manifolds, eigenfunctions cannot concentrate near geodesics as measured in $L^2$. From this we obtain improved $L^p$ estimates which complement the sup -norm bounds in this setting obtained by Berard in the 1970s. Time permitting, we shall also discus related joint work with Y. Xi and C. Zhang on period integrals on Riemannian surfaces of negative curvature