We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Birkhoff normal form for nonlinear wave equations

Formale Metadaten

Titel
Birkhoff normal form for nonlinear wave equations
Serientitel
Teil
20
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr2016
SpracheEnglisch

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Many theorems on global existence of small amplitude solutions of nonlinear wave equations in ${\mathbb R}^n$ depend upon a competition between the time decay of solutions and the degree of the nonlinearity. Decay estimates are more effective when inessential nonlinear terms are able to be removed through a well-chosen transformation. Most wave equations that arise in a physical context can be considered as Hamiltonian PDEs, that is, partial differential equations that can be formulated as a Hamiltonian system. In this talk, we construct Birkhoff normal forms transformations for the class of wave equations which are Hamiltonian PDEs and null forms, giving a new proof via canonical transformations of the global existence theorems for null form wave equations of S. Klainerman, J. Shatah and other, in space dimensions $n \geq 3$.The critical case $n = 2$ is also under consideration. These results are work-in-progress with A. French and C. - R. Yang