We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Wellposedness and scattering for the Zakharov system in four dimensions

Formale Metadaten

Titel
Wellposedness and scattering for the Zakharov system in four dimensions
Serientitel
Teil
1
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This is joint work with Ioan Bejenaru, Zihua Guo and Sebastian Herr. We consider the Cauchy problem for the Zakharov system in four space dimensions, extending the local wellposedness by Ginibre, Tsutsumi and Velo to wider range of Sobolev exponents, together with scattering for small data. We observe distinct phenomena at two extreme points of exponents. One is at the energy space, where our nonlinear estimates suffer from divergence related to the critical Sobolev embedding. We can however prove the results for small data, without any improvement of the estimates, but from the existence in a smaller Sobolev space and the uniqueness in a larger one, together with the conservation law. At another corner point of exponents, the critical space is also intermediate, but we obtain a strong illposedness result in terms of instantaneous exit or non-existence of weak solutions.