We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Remarks about the self - similar solutions of the Vortex Filament Equation

Formale Metadaten

Titel
Remarks about the self - similar solutions of the Vortex Filament Equation
Serientitel
Teil
11
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I will review some of the properties of the self-similar solutions of the Vortex Filament Equation. This equation is also known as either the Localized Induction Equation or the binormal flow and is related to the 1d Schrodinger map and the 1d cubic non-linear Schrodinger equation. After looking at the uniqueness and asymptotic behavior of these solutions, I will recall the method developed with V. Banica to continue the solution once the singularity (a corner) is created. Issues concerning the lack of the preservation of linear momentum and the no-continuity of some critical Besov norms will be considered. Finally I will mention some recent work done with F. De La Hoz about the evolution of a regular polygon