We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Some Landau damping results for the HMF model and its discrete time approximation

Formale Metadaten

Titel
Some Landau damping results for the HMF model and its discrete time approximation
Serientitel
Teil
12
Anzahl der Teile
21
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider solutions of the Vlasov-HMF model starting in a small Sobolev neighborhood of a spatially homogeneous stationary state satisfying a linear stability criterion and prove a scattering result (Landau damping). We then consider time discretizations of these solutions based on splitting methods between the linear and non-linear part of the equation and we prove that the numerical solutions converge weakly to a modified state which is close to the continuous one. We also prove that our numerical scheme is uniformly convergent, with a convergence rate of order one for Lie splittings, and two for Strang splittings. We will also consider the case of non-homegeous states for which action-angle variables can be used