We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Logic and topology

Formale Metadaten

Titel
Logic and topology
Serientitel
Teil
17
Anzahl der Teile
28
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The logic of topos is naturally described using intuitionistic higher-order logic, an intuitionistic version of a simple theory of types, a formal system designed by A. Church (1940). Two important axioms of this formal system are the axiom of extensionality and the axiom of description. Recently, Voevodsky formulated the axiom of univalence, which can be seen as a natural generalization of the axiom of extensionality, and showed that this axiom is valid in a model where a type is interpreted as a Kan simplicial set. This model uses classical logic in an essential way. We present a variation of this model which is carried out in an intuitionistic meta-theory and explain how the axiom of description is validated in this model.