We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Using the internal language of toposes in algebraic geometry

Formale Metadaten

Titel
Using the internal language of toposes in algebraic geometry
Serientitel
Teil
13
Anzahl der Teile
28
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We describe how the internal language of certain toposes, the associated petit and gros Zariski toposes of a scheme, can be used to give simpler denitions and more conceptual proofs of the basic notions and observations in algebraic geometry. The starting point is that, from the internal point of view, sheaves of rings and sheaves of modules look just like plain rings and plain modules. In this way, some concepts and statements of scheme theory can be reduced to concepts and statements of intuitionistic linear algebra. Furthermore, modal operators can be used to model phrases such as \on a dense open subset it holds that\ or \on an open neighbourhood of a given point it holds that\. These operators dene certain subtoposes; a generalization of the double-negation translation is useful in order to understand the internal universe of those subtoposes from the internal point of view of the ambient topos. A particularly interesting task is to internalize the construction of the relative spectrum, which, given a quasicoherent sheaf of algebras on a scheme X, yields a scheme over X. From the internal point of view, this construction should simply reduce to an intuitionistically sensible variant of the ordinary construction of the spectrum of a ring, but it turns out that this expectation is too naive and that a rened approach is necessary.