We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

There are categories of ‘spaces' that are not categories of locales

Formale Metadaten

Titel
There are categories of ‘spaces' that are not categories of locales
Serientitel
Teil
22
Anzahl der Teile
28
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We described a short list of categorical axioms that make a category behave like the category of locales. In summary the axioms assert that the category has an object that behaves like the Sierpnski space and this object is double exponentiable. A number of the usual results of locale theory can be derived using the axioms: the (weakly) closed subgroup theorem proved, closed and proper surjection are of eective descent, parallel theories of discrete and compact Hausdor spaces emerge. An example is given of a category that satises the axioms but which is not the category of locales for any topos. We show how to embed the category of elementary toposes into the category whose objects are categories that satisfy the axioms.