We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Hodge index theorem for adelic line bundles

Formale Metadaten

Titel
Hodge index theorem for adelic line bundles
Serientitel
Anzahl der Teile
26
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Hodge index theorem of Faltings and Hriljac asserts that the Neron-Tate height pairing on a projective curve over a number field is equal to a certain intersection pairing in the setting of Arakelov geometry. In the talk, I will present an extension of this result to adelic line bundles on higher dimensional varieties over finitely generated fields. Then I will talk about its relation to the non-archimedean Calabi-Yau theorem and its application to algebraic dynamics. This is a joint work with Shou-Wu Zhang.