We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Sat-utils: Landsat, Sentinel and the use of open raster data

Formale Metadaten

Titel
Sat-utils: Landsat, Sentinel and the use of open raster data
Serientitel
Teil
17
Anzahl der Teile
193
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Open satellite data from the US and EU have provided scientists and businesses with a wealth of data, but it can be difficult to fully easily access and process it. Recent efforts to put Sentinel-2 data on AWS S3 along with Landsat-8 has made it easier to build tools to access both data sources. At Development Seed, we are building tools called sat-utils to process and access open raster data like Landsat and Sentinel. We've expanded development on the tools to be a suite of Python libraries and command line tools for querying, downloading, managing, and processing other remote sensing data. It's been two years since we've launched the first sat-util, landsat-util, which has proven to be a valuable tool with a growing user base. sentinel-util is an tool that will provide the same easy access to data that landsat-util provides. We will discuss the processing for turning spectral band data into usable products such as color corrected RGB images, radiance data, top of the atmosphere reflectance, and various indices. We will also demonstrate the available APIs we have for open raster data: sentinel-api and landsat-api, that our client utils use for searching available metadata.