We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

geotiff.js and plotty.js - Visualizing Scientific Raster Data in the Browser

Formale Metadaten

Titel
geotiff.js and plotty.js - Visualizing Scientific Raster Data in the Browser
Serientitel
Teil
22
Anzahl der Teile
193
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Exploitation of Scientific Raster Data stored in large online archives used to be cumbersome: either the data has to be transformed in an RGB version on the server using parameters supplied by the client, or the original data is downloaded and then inspected using a desktop GIS system. Browsers without specific extensions simply were not capable of dealing with the types of data found in scientific context. Today with HTML5 and WebGL browsers finally have the necessary prerequisites to create tools to dynamically visualize and explore scientific data sets. geotiff.js is a small JavaScript library to parse GeoTIFF files containing any kind of 2D raster data. The library handles various different configurations and common data types far beyond RGB data. On the other hand, plotty.js provides functionality to dynamically style 2D arrays for visualization using either predefined color scales or custom ones. In the presentation, I’m going to show how both libraries complement each other to allow a very dynamic form of data exploitation. Additionally, it will be shown how the techniques can be applied to more traditional Web Mapping concepts as dynamically styled data is displayed on a globe widget in various forms including 3D data cubes and time series of data.