We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Une construction de l'aire de Lévy avec drift comme limite renormalisée sur des graphes périodiques

Formale Metadaten

Titel
Une construction de l'aire de Lévy avec drift comme limite renormalisée sur des graphes périodiques
Serientitel
Teil
3
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Une construction de l'aire de Lévy avec drift comme limite renormalisée sur des graphes périodiques Dans la théorie des chemins rugueux, l’aire de Lévy joue un rôle important non seulement en tant que composante du mouvement brownien, mais aussi dans l’étude de la convergence des solutions des EDS, et c’est là où l’absence ou la présence d’un drift à la limite est cruciale. Le but de cet exposé est de construire explicitement une aire de Lévy avec drift comme limite renormalisée d’une chaîne de Markov sur un graphe périodique, d’en donner quelques propriétés et d’illustrer le tout par quelques exemples de modèles issus de la physique quantique.