We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Variation on sur information theory: categories, cohomology, entropy

Formale Metadaten

Titel
Variation on sur information theory: categories, cohomology, entropy
Alternativer Titel
alternative title of the resource
Serientitel
Teil
13
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
L'entropie d'une variable aléatoire discrète, introduit par Shannon et généralisé par Kolmogorov, Sinai et autres, satisfait l'identité 0=H(Y|X)-H(XY)+H(X). On verra que, si on considère une catégorie S de “observables” et un topos de Grothendieck associé à ce catégorie (les préfaisceaux sur S), l'égalité ci-dessus s'interprète au niveau cohomologique comme une condition de cocycle. Sous certaines hypothèses, l'entropie apparaît comme le générateur du premier groupe de “cohomologie de l'information”, introduit par Benenquin-Baudot l'année dernière. On parlera de cette approximation catégorique aux probabilités classiques et quantiques; quelques constructions de Gromov seront aussi mentionnés.