We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Optimal Best Arm Identification with Fixed Confidence

Formale Metadaten

Titel
Optimal Best Arm Identification with Fixed Confidence
Serientitel
Teil
4
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This talk proposes a complete characterization of the complexity of best-arm identification in one-parameter bandit models. We first give a new, tight lower bound on the sample complexity, that is the total number of draws of the arms needed in order to identify the arm with highest mean with a prescribed accuracy. This lower bound does not take an explicit form, but reveals the existence of a vector of optimal proportions of draws of the arms, that can be computed efficiently. We then propose a 'Track-and-Stop' strategy, whose sample complexity is proved to asymptotically match the lower bound. It consists in a new sampling rule, which tracks the optimal proportions of arm draws, and a stopping rule for which we propose several interpretations and that can be traced back to Chernoff (1959).