We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tuning Python applications can dramatically increase performance

Formale Metadaten

Titel
Tuning Python applications can dramatically increase performance
Serientitel
Teil
144
Anzahl der Teile
173
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
ProduktionsortBilbao, Euskadi, Spain

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Vasilij Litvinov - Tuning Python applications can dramatically increase performance Traditional Python profiling tools have limitations. Standard tools like **cProfile** and most all third party tools (like **Python Tools** plugin for Microsoft Visual Studio) suffer from common flaws. First, the profiling overhead is high (up to 50%). Second, the information provided is “function-level” i.e. the tool shows how much time was spent within a function, but not actionable “line-level” information to show which exact lines are _the bottleneck_ in a function. Adding “line-level” information to most tools causes the application to run even slower. Third, some tools require modification of the application source code to enable profiling thus disrupting development. This talk presents an experimental Python profiler. It typically has less than 15% overhead, shows line-level information and does not require modification of application source code. Experiments using it resulted in performance gains of 2x and more. Of course results vary by application, but in a typical application there may be quick optimizations easily identified by this type of profiler. The talk will briefly describe the basics of what, why and how to profile. The profiler‘s use and results will be shown in the presentation with examples based on real-life applications. Previous experience of working with profilers and trying to optimize an application is a plus, but not required, to gain a better appreciation of the work presented.
Schlagwörter